

NAMIBIA UNIVERSITY

OF SCIENCE AND TECHNOLOGY

FACULTY OF HEALTH AND APPLIED SCIENCES

DEPARTMENT OF NATURAL AND APPLIED SCIENCES

QUALIFICATION: BACHELOR OF SCIE	NCE	
QUALIFICATION CODE: 07BOSC	LEVEL: 7	
COURSE CODE: QPH 702S	COURSE NAME: QUANTUM PHYSICS	
SESSION: JANUARY 2019	PAPER: THEORY	
DURATION: 3 HOURS	MARKS: 100	

SUPPLEMENTAL	RY/SECOND OPPORTUNITY EXAMINATION QUESTION PAPER	
EXAMINER(S)	Prof Dipti R. Sahu	
MODERATOR:	Dr Habatwa V. Mweene	

	INSTRUCTIONS	
1.	Answer ALL the questions.	
2.	Write clearly and neatly.	
3.	Number the answers clearly.	

PERMISSIBLE MATERIALS

Non-programmable Calculators

THIS QUESTION PAPER CONSISTS OF 3 PAGES (Including this front page)

- Given that the wavefunction of an electron is $\Psi=(\pi a_o^3)^{-1/2}e^{-r/a_o}$, where 0< r < ∞ and a_o is Bohr radius, evaluate:
 - 1.1.1 The probability density p(x). (5)
 - 1.1.2 The probability that the electron is within $0 < r < 2a_0$ (10)
- 1.2 Explain how to describe a system in quantum mechanics? (5)

Question 2 [20]

2.1 The potential function for a particle in a finite box is defined as $V(x) = \begin{cases} V_o; & 0 \le x \le L \\ 0; & \text{otherwise} \end{cases}$ (10)

Sketch the graph of potential V(x) and find the solution for wavefunction in different region.

2.2 Obtain the binding energy of a particle of mass m in one dimension due to the short-range potential $V(x) = -V_0 \delta(x)$ (10)

Question 3 [20]

3.1 Calculate the value of r at which the radial probability density of the hydrogen atom reaches its maximum

$$3.1.2 l = n-1, m=0$$
 (10)

Given

$$R_{nl}(r) = -\left(\frac{2}{na_0}\right)^{3/2} \sqrt{\frac{(n-l-1)!}{2n[(n+l)!]^3}} \left(\frac{2r}{na_0}\right)^l e^{-r/na_0} L_{n+l}^{2l+1} \left(\frac{2r}{na_0}\right)^l$$

3.2 What can be said about the Hamiltonian operator if L_z is constant in time? (5)

Question 4

[20]

4.1 Evaluate the matrix of L_2 for I = 2. Why is the matrix not diagonal? (10)

For l = 2, $m_l = 2,1,0,-1,-2$

4.2 Evaluate the spin matrices S_y and S_z for a particle with spin $s = \frac{1}{2}$ (10)

Question 5 [20]

5.1 A particle is placed in a deformed infinite potential well defined by the potential V(x), (10) $0: -\frac{L}{x} < x < 0$

$$V(x) = \begin{cases} 0; & -\frac{L}{2} < x < 0 \\ 0.5\varepsilon_{o}; & 0 < x < \frac{L}{2} \end{cases}$$

where ε_0 is the ground state energy of the infinite well and L is the width of the well. Evaluate the correction to the ground state energy of the system, regarding the infinite

well as the unperturbed system. Given, $\Psi_{\text{o}} = \sqrt{\frac{2}{L}} cos\frac{\pi}{L} x$

5.2 A charged particle is bound in a harmonic oscillator potential $V = \frac{1}{2}kx^2$. The system is placed in an external electric field E that is constant in space and time. Calculate the shift of the energy of the ground state to order E^2 . The wave function of the ground state of a harmonic oscillator is given as

$$\psi(x) \equiv \langle x|0 \rangle = \sqrt{\frac{a}{\pi^{1/2}}} \exp\left(-\frac{1}{2}\alpha^2 x^2\right)$$

where

$$\alpha = \sqrt{\frac{m\omega}{\hbar}}, \quad \omega = \sqrt{\frac{k}{m}}$$

.....

Useful Standard Integral

Plank constant $h = 6.63 \times 10^{-34} Js$

$$\int\limits_{-\infty}^{\infty} e^{-y^2} dy = \sqrt{\pi}$$

Speed of light c = 3 x 10⁸ m/s

$$\int_{-\infty}^{\infty} y^n e^{-y^2} dy = \frac{\sqrt{\pi}}{n}; \quad n \quad \text{even}$$
0: n odd

Mass of electron m = $9.11 \times 10^{-31} \text{ kg}$

$$\int_{0}^{\infty} e^{-\alpha y^{2}} e^{-\beta y} dy = \left(\frac{\pi}{\alpha}\right)^{\frac{1}{2}} e^{\frac{\beta^{2}}{4\alpha}}$$

------END-------END------